Управление яркостью светодиода одной кнопкой. Управление светодиодной лентой при помощи Аrduino. Описание программы для Arduino

Аппаратное обеспечение:

- плата
- макетная плата
- светодиод
- резистор 220 Ом

Электрическая цепь:

Соедините анод (длинный вывод) вашего светодиода с цифровым выводом 9 Arduino через резистор 220 Ом. Соедините катод (короткий вывод) с землей (GND) Arduino.



Схема:


Код:

В функции setup() нужно назначить вывод 9 выходом.
Функция analogWrite() которую вы будете использовать в основном цикле имеет два аргумента: первый говорит функции какой вывод использовать, во второй записывают значение для ШИМ.
Для того чтобы плавно увеличить яркость светодиода, а потом плавно уменьшить вам нужно сначала увеличивать значение ШИМ от 0 (светодиод выключен) до 255 (максимальная яркость), а потом наоборот. В нашей программе переменная отвечающая за значение ШИМ будет называться brightness. В каждом цикле эта переменная будет изменятся на значение fadeAmount.
Как только brightness достигнет значения 255 или 0 fadeAmount изменит свой знак. Таким способом мы сможем поменять увеличения яркости на понижение и наоборот.
analogWrite() изменяет значение ШИМ очень быстро, потому нужна задержка для контроля скорости изменения яркости. Вы можете сами изменять значения задержки и смотреть как это скажется на работе.

Полный текст программы:

/*

Этот пример показывает как изменять яркость светодиода на выводе 9

используя функцию analogWrite().

*/

int led = 9; // вывод светодиода 9

int brightness = 0; // переменная отвечающая за яркость

int fadeAmount = 5; // переменная, которая задает скорость изменения яркости за цикл

// настройки:

void setup() {

// назначим вывод 9 выходом :

pinMode (led, OUTPUT);

// основной цикл :

void loop () {

// устанавливаем яркость светодиода на выводе 9:

analogWrite (led, brightness);

// изменим значение яркости для следующего прохода цикла:

brightness = brightness + fadeAmount;

// поменяем направление изменения яркости :

if (brightness == 0 || brightness == 255) {

fadeAmount = -fadeAmount ;

// ждем 30 миллисекунд для наблюдения эффекта диммирования:

delay (30);




- полный каталог плат

И попробуем выполнить новую задачу. Думаю, что все видели новогодние витринные гирлянды, в которых плавно мигают светодиоды. Допустим, что мы хотим сделать нечто подобное.
Мы уже рассматривали функцию digitalWrite() и знаем, что значение, которое она записывает, может быть двух вариантов - высокий или низкий уровень. В данном случае нам поможет функция analogWrite(). "Формулировки" функций различаются только начальными приставками, поэтому их легко запомнить.

Функция analogWrite(), так же как и digitalWrite(), содержит в скобках два аргумента и работает по тому же словесному принципу: "куда, что". Главным различием является возможность записи широкого диапазона значений вместо привычного LOW или HIGH. Это и позволит нам регулировать яркость светодиода. Главное замечание, которое необходимо учитывать, это то, что данная функция работает только на определенных контактах. Эти контакты обозначены символом "~". Этот символ означает, что это PWM-контакт. PWM (pulse-width modulation) звучит по-русски как ШИМ (широтно-импульсная модуляция). Принцип работы основан на изменении длительности импульса. Графически это можно изобразить так:

Давайте попробуем разобраться как это работает, рассмотрев простой пример. Для этого необходимо подключить светодиод к PWM-контакту через резистор номиналом 150 Ом и "зашить" в Arduino простенькую программу. Схема подключения и код скетча представлены ниже:


void setup()
{
pinMode(led,OUTPUT);
}

void loop()
{
for(int i=0; i<=255; i++)
{
analogWrite(led,i);
delay(10);
}
for(int i=255; i>=0; i--)
{
analogWrite(led,i);
delay(10);
}
}


Думаю, что в целом код понятен, но необходимо уделить немного внимания циклу for(). Существует такое понятие как разрешение. Поскольку мы работаем с 8-битным разрешением (это будет рассмотрено несколько позднее), то минимальному значению будет соответствовать 0, а максимальному - 255. В конце каждой итерации мы установили временную задержку в 10мс.

Давайте вернемся к схеме из предыдущего урока и попробуем сделать аналогичную гирлянду с использованием функции analogWrite().


int buttonPin = 2;
int pins = {3,5,6,9,10,11};

boolean lastButton = LOW;
boolean currentButton = LOW;
boolean enable = false;

void setup()
{
pinMode(buttonPin, INPUT);
for(int mode = 0; mode <= 5; mode++) pinMode(pins, OUTPUT);
}

boolean debounce(boolean last)
{
boolean current = digitalRead(buttonPin);
if(last != current)
{
delay(5);
current = digitalRead(buttonPin);
}
return current;
}

void loop()
{
currentButton = debounce(lastButton);
if(lastButton == LOW && currentButton == HIGH)
{
enable = !enable;
}

If(enable == true)
{
for (int i=0; i<=5; i++)
{
for (int brightness = 0; brightness <= 255; brightness++)
{
delay(1);
}
delay(40);
}
for (int i=0; i<=5; i++)
{
for (int brightness = 255; brightness >= 0; brightness--)
{
analogWrite(pins[i], brightness);
delay(1);
}
delay(40);
}
}

If(enable == false)
{
for(int i = 0; i <= 5; i++) digitalWrite(pins[i], LOW);
}

LastButton = currentButton;
}


Визуально скетч стал несколько сложнее. На самом деле здесь все просто и давайте в этом разберемся. Нам необходимо идентифицировать все подключенные светодиоды, но вместо привычного int led мы используем массив, каждый элемент которого является PWM-контактом на Arduino. В теле функции void setup() мы тоже поступили хитрым образом. "Перечислять" все контакты мы доверили циклу for(), с каждой итерацией которого производится конфигурация соответствующего контакта на OUTPUT. Переходим к функции void loop(). Функция debounce() и начальное условие if() остается без изменений. У нас по-прежнему идет проверка уровней двух переменных: предыдущее значение (изначально LOW) и текущее состояние кнопки. При выполнении этих условий значение переменной enable инвертируется. Учитывая это, мы добавили еще два простых условия if(). Если enable = true, то гирлянда включается, плавностью "перетекания" которой управляет цикл for(). Если же enable = false, то все светодиоды выключены. По окончанию условий переменная lastButton принимает текущее состояние кнопки.
Тестируя нашу программу, мы заметили, что все работает не должным образом. Помните, в прошлом уроке мы сделали поправку, что при большом значении временной задержки кнопка срабатывает по её истечению? В прошлом примере, при включенной гирлянде, суммарная задержка в теле функции void loop() составляла 85мс. Это давало нам возможность успеть "попасть" в определенной отрезок времени. В данном скетче, при том же условии, задержка отличается в несколько раз. Возможно, при желании выключить гирлянду напрашивается слово "прервать". Это и будет являться решением данной задачи!

Надеюсь, что эта статья была для Вас полезной. В следующем уроке мы рассмотрим прерывания в Arduino и добьемся должного результата.

Как рождаются программы

Это будет немного не обычная статья, в ней я попробую не просто показать готовый код, который что-то делает, а покажу как рождается устройство и прошивка для него. Мы рассмотрим логику работы программы и то как эту логику построить.

Сегодня мы с вами будем решать следующую задачу: есть 2 светодиода их надо подключить к Arduino и реализовать возможность регулировать яркость их горения.

Приступим!

Первым делом надо продумать как будет выглядеть наше устройство и что нам понадобится для его реализации, нам надо чем то регулировать яркость светодиодов и видеть в каком режиме сейчас работают светодиоды для этого отлично подходит lcd shield который мы рассматривали в прошлой статье .

Теперь нам осталось подключить светодиоды, для этого отлично подходит так называемый бредборд, это пластиковая штуковина (не знаю как ее по другому назвать) в которую без пайки можно подключить провода от Arduino и другие электронные компоненты, что очень удобно когда ты точно не знаешь как будет выглядеть готовое устройство или схема нужно всего на несколько запусков. Китайцы клепают огромное количество их разновидностей, я лично пользуюсь таким:

Для простоты понимания как он устроен внутри я приложу схему внутренних соединений:

Подключение светодиодов к Arduino

Многие сейчас скажут: что сложного в подключении светодиода, это же лампочка! И будут не правы, светодиод - это далеко не простая лампочка, а полупроводниковый световой прибор. Который питается не напряжением как обычная лампочка, а током и если ток превысит допустимые значения, то светодиод начнет деградировать, его яркость будет уменьшатся что станет заметно через некоторое время, зависящее от мощности протыкаемого тока или, вообще моментально сгорит.

Как избежать порчи светодиода из-за большого тока? Все очень просто: нужно использовать токоограничивающий резистор, который надо рассчитывать для каждого светодиода в зависимости от его характеристик. Расчет резисторов для светодиода - это тема для отдельной статьи и сегодня мы не будем углубляться в эту тему так как скорей всего вы не знаете характеристик светодиода, который вы где-то нашли. На этот случай я использую маленькое правило: если светодиод не яркий, то я запитываю его через резистор сопротивлением от 220 до 400 ом в зависимости от того какой резистор был под рукой. Главное запомнить правило – лучше больше чем меньше. При большем сопротивлении чем требуется светодиоду, он просто будет гореть тусклее нормы.

Теперь надо определится как регулировать яркость светодиода, для этого можно использовать переменные резисторы что в принципе исключит интерактивную регулировку и по этому мы не будем использовать данный способ в этой статье. Мы будем использовать ШИМ реализованный на плате Arduino.

Что такое ШИМ

ШИМ (широтно-импульсная модуляция) – это изменение скважности сигнала на определенном отрезке времени. Шим сигнал имеет следующий вид по сравнению с постоянным сигналом:

На этой картинке 100% рабочего цикла это отсутствие ШИМ как такового, сигнал идет без изменений, как будто вывод просто подключен к 5 вольтам.

0% рабочего цикла это отсутствие какого-либо сигнала, как будто провод никуда не подключен.

Остальные режимы работы - это быстрое переключение режимов работы что заставляет светодиод как бы моргать с большой скоростью не заметной глазу человека (100 раз в секунду) что и заставляет его гореть с не полной яркостью. Arduino в зависимости от версии используемого чипа имеет разное количество ШИМ выходов, на плате они помечены знаком ~ из прошлой статьи мы знаем что это 6 выходов 3, 5, 6, 9, 10, и 11 мы будем использовать 10 и 11 выводы.

Давайте наконец то подключим светодиоды к плате. Надеваем на Arduino наш lcd shield и собираем следующею схему для которой нам понадобится бредборд, 2 светодиода, 2 резистора на 250 ом, и 3-4 провода папа- папа. Схема будет иметь следующий вид:

И не забываем, что у светодиода есть полярность, длинная или кривая (как на схеме) ножка светодиода - это плюс который и подключается через резистор.

На этом я наверно закончу первую часть статьи, во второй части мы займемся именно проработкой логики работы и написанием кода программ. Всем добра!

Теперь же разберемся с многоцветным светодиодом, который часто называют сокращенно: RGB-светодиод . RGB — это аббревиатура, которая расшифровывается как: Red — красный, Green — зеленый, Blue — синий. То есть внутри этого устройства размещается сразу три отдельных светодиода. В зависимости от типа, RGB-светодиод может иметь общий катод или общий анод.

1. Смешение цветов

Чем RGB-светодиод, лучше трех обычных? Всё дело в свойстве нашего зрения смешивать свет от разных источников, размещенных близко друг к другу. Например, если мы поставим рядом синий и красный светодиоды, то на расстоянии несколько метров их свечение сольется, и глаз увидит одну фиолетовую точку. А если добавим еще и зеленый, то точка покажется нам белой. Именно так работают мониторы компьютеров, телевизоры и уличные экраны. Матрица телевизора состоит из отдельно стоящих точек разных цветов. Если взять лупу и посмотреть через нее на включенный монитор, то эти точки можно легко увидеть. А вот на уличном экране точки размещаются не очень плотно, так что их можно различить невооруженным глазом. Но с расстояния несколько десятков метров эти точки неразличимы. Получается, что чем плотнее друг к другу стоят разноцветные точки, тем меньшее расстояние требуется глазу чтобы смешивать эти цвета. Отсюда вывод: в отличие от трех отдельностоящих светодиодов, смешение цветов RGB-светодиода заметно уже на расстоянии 30-70 см. Кстати, еще лучше себя показывает RGB-светодиод с матовой линзой.

2. Подключение RGB-светодиода к Ардуино

Поскольку многоцветный светодиод состоит из трех обычных, мы будем подключать их отдельно. Каждый светодиод соединяется со своим выводом и имеет свой отдельный резистор. В уроке мы используем RGB-светодиод с общим катодом, так что провод к земле будет только один. Принципиальная схема
Внешний вид макета

3. Программа для управления RGB-светодиодом

Составим простую программу, которая будет по очереди зажигать каждый из трех цветов. const byte rPin = 3; const byte gPin = 5; const byte bPin = 6; void setup() { pinMode(rPin, OUTPUT); pinMode(gPin, OUTPUT); pinMode(bPin, OUTPUT); } void loop() { // гасим синий, зажигаем красный digitalWrite(bPin, LOW); digitalWrite(rPin, HIGH); delay(500); // гасим красный, зажигаем зеленый digitalWrite(rPin, LOW); digitalWrite(gPin, HIGH); delay(500); // гасим зеленый, зажигаем синий digitalWrite(gPin, LOW); digitalWrite(bPin, HIGH); delay(500); } Загружаем программу на Ардуино и наблюдаем результат. Your browser does not support the video tag. Немного оптимизируем программу: вместо переменных rPin, gPin и bPin применим массив. Это нам поможет в следующих заданиях. const byte rgbPins = {3,5,6}; void setup() { for(byte i=0; i<3; i++) pinMode(rgbPins[i], OUTPUT); } void loop() { digitalWrite(rgbPins, LOW); digitalWrite(rgbPins, HIGH); delay(500); digitalWrite(rgbPins, LOW); digitalWrite(rgbPins, HIGH); delay(500); digitalWrite(rgbPins, LOW); digitalWrite(rgbPins, HIGH); delay(500); }

4. Семь цветов радуги

Теперь попробуем зажигать одновременно по два цвета. Запрограммируем такую последовательность цветов:
  • красный
  • красный + зеленый = желтый
  • зеленый
  • зеленый + синий = голубой
  • синий
  • синий + красный = фиолетовый
Оранжевый цвет мы для упрощения опустили. Так что, получилось шесть цветов радуги 🙂 const byte rgbPins = {3,5,6}; const byte rainbow = { {1,0,0}, // красный {1,1,0}, // жёлтый {0,1,0}, // зелёный {0,1,1}, // голубой {0,0,1}, // синий {1,0,1}, // фиолетовый }; void setup() { for(byte i=0; i<3; i++) pinMode(rgbPins[i], OUTPUT); } void loop() { // перебираем все шесть цветов for(int i=0; i<6; i++){ // перебираем три компоненты каждого из шести цветов for(int k=0; k<3; k++){ digitalWrite(rgbPins[k], rainbow[i][k]); } delay(1000); } } В результате работы программы получается: Your browser does not support the video tag.

5. Плавное изменение цвета

Мы не зря подключили RGB-светодиод к выводам 3, 5 и 6. Как известно, эти выводы позволяют генерировать ШИМ сигнал разной скважности. Другими словами, мы можем не просто включать или выключать светодиод, а управлять уровнем напряжения на нем. Делается это с помощью функции analogWrite . Сделаем так, что наш светодиод будет переходить между цветами радуги не скачкообразно, а плавно. const byte rgbPins = {3,5,6}; int dim = 1; void setup() { for(byte i=0; i<3; i++){ pinMode(rgbPins[i], OUTPUT); } // начальное состояние - горит красный цвет analogWrite(rgbPins, 255); analogWrite(rgbPins, 0); analogWrite(rgbPins, 0); } void loop() { // гасим красный, параллельно разжигаем зеленый for(int i=255; i>=0; i--){ analogWrite(rgbPins, i/dim); analogWrite(rgbPins, (255-i)/dim); delay(10); } // гасим зеленый, параллельно разжигаем синий for(int i=255; i>=0; i--){ analogWrite(rgbPins, i/dim); analogWrite(rgbPins, (255-i)/dim); delay(10); } // гасим синий, параллельно разжигаем красный for(int i=255; i>=0; i--){ analogWrite(rgbPins, i/dim); analogWrite(rgbPins, (255-i)/dim); delay(10); } } Переменная dim определяет яркость свечения. При dim = 1 имеем максимальную яркость. Загружаем программу на Ардуино. Your browser does not support the video tag.

Задания

  1. Индикатор температуры. Добавим в схему термистор и подключим его к аналоговому входу. Светодиод должен менять свой цвет в зависимости от температуры термистора. Чем ниже температура, тем более синий цвет, а чем выше, тем более красный.
  2. RGB лампа с регулятором. Добавим в схему три переменных резистора и подключим их к аналоговым входам. Программа должна непрерывно считывать значения резисторов и менять цвет соответствующей компоненты RGB-светодиода.

Список деталей для эксперимента

Для дополнительного задания

    еще 1 светодиод

    еще 1 резистор номиналом 220 Ом

    еще 2 провода

Принципиальная схема

Схема на макетке

Обратите внимание

    Мы подключили «землю» светодиода и переменного резистора (потенциометра) к длинной рельсе «-» макетной платы, и уже ее соединили с входом GND микроконтроллера. Таким образом мы использовали меньше входов и от макетки к контроллеру тянется меньше проводов.

    Подписи «+» и «-» на макетке не обязывают вас использовать их строго для питания, просто чаще всего они используются именно так и маркировка нам помогает

    Не важно, какая из крайних ножек потенциометра будет подключена к 5 В, а какая к GND, поменяется только направление, в котором нужно крутить ручку для увеличения напряжения. Запомните, что сигнал мы считываем со средней ножки

    Для считывания аналогового сигнала, принимающего широкий спектр значений, а не просто 0 или 1, как цифровой, подходят только порты, помеченные на плате как «ANALOG IN» и пронумерованные с префиксом A . Для Arduino Uno - это A0-A5.

Скетч

p030_pot_light.ino // даём разумные имена для пинов со светодиодом // и потенциометром (англ potentiometer или просто «pot») #define LED_PIN 9 #define POT_PIN A0 void setup() { // пин со светодиодом - выход, как и раньше... pinMode(LED_PIN, OUTPUT) ; // ...а вот пин с потенциометром должен быть входом // (англ. «input»): мы хотим считывать напряжение, // выдаваемое им pinMode(POT_PIN, INPUT) ; } void loop() { // заявляем, что далее мы будем использовать 2 переменные с // именами rotation и brightness, и что хранить в них будем // целые числа (англ. «integer», сокращённо просто «int») int rotation, brightness; // считываем в rotation напряжение с потенциометра: // микроконтроллер выдаст число от 0 до 1023 // пропорциональное углу поворота ручки rotation = analogRead(POT_PIN) ; // в brightness записываем полученное ранее значение rotation // делённое на 4. Поскольку в переменных мы пожелали хранить // целые значения, дробная часть от деления будет отброшена. // В итоге мы получим целое число от 0 до 255 brightness = rotation / 4 ; // выдаём результат на светодиод analogWrite(LED_PIN, brightness) ; }

Пояснения к коду

    С помощью директивы #define мы сказали компилятору заменять идентификатор POT_PIN на A0 - номер аналогового входа. Вы можете встретить код, где обращение к аналоговому порту будет по номеру без индекса A . Такой код будет работать, но во избежание путаницы с цифровыми портами используйте индекс.

    Переменным принято давать названия, начинающиеся со строчной буквы.

    Чтобы использовать переменную, необходимо ее объявить, что мы и делаем инструкцией:

int rotation, brightness;

    Переменные одного типа можно объявить в одной инструкции, перечислив их через запятую, что мы и сделали

    Функция analogRead(pinA) возвращает целочисленное значение в диапазоне от 0 до 1023, пропорциональное напряжению, поданному на аналоговый вход, номер которого мы передаем функции в качестве параметра pinA

    Обратите внимание, как мы получили значение, возвращенное функцией analogRead() : мы просто поместили его в переменную rotation с помощью оператора присваивания = , который записывает то, что находится справа от него в ту переменную, которая стоит слева

Вопросы для проверки себя

    Можем ли мы при сборке схемы подключить светодиод и потенциометр напрямую к разным входам GND микроконтроллера?

    В какую сторону нужно крутить переменный резистор для увеличения яркости светодиода?

    Что будет, если стереть из программы строчку pinMode(LED_PIN, OUTPUT) ? строчку pinMode(POT_PIN, INPUT) ?

    Зачем мы делим значение, полученное с аналогового входа перед тем, как задать яркость светодиода? что будет, если этого не сделать?