Ремонт колонок genius c питанием от сети. Ремонт компьютерных колонок своими руками. Включение активной колонки


При экспериментах с компактной активной акустической системой (АС) "Genius SP-P110" было выяснено, что установленные в неё динамические головки способны на более качественное звучание, чем может обеспечить встроенный в неё двухканальный УМЗЧ. Эта АС относится к низшей ценовой категории, поэтому неудивительно, что производитель сэкономил на всём, на чём только можно было сэкономить. Поэтому с целью повышения качества звучания и повышения надёжности было решено доработать это устройство.

В первую очередь был изготовлен новый блок питания, схема которого показана на рис. 1. Старый, сильно гревшийся трансформатор с габаритной мощностью около 2 Вт удалён. Взамен него установлен более мощный и надёжный трансформатор ТС-БП-22 (от кассетной магнитолы советского производства). Сетевое напряжение 230 В поступает на первичную обмотку трансформатора T1 через замкнутые контакты выключателя SB1 и резистор R1, который выполняет защитную функцию. Варистор RU1 совместно с резистором R1 защищает трансформатор от превышения сетевого напряжения.

Рис. 1. Схема блока питания

С вторичной обмотки трансформатора T1 переменное напряжение 9...10 В через самовосстанавливаю-щийся предохранитель F1 поступает на мостовой выпрямитель, собранный на диодах VD1-VD4. Конденсатор C5 сглаживает пульсации выпрямленного напряжения, светодиод HL1 сигнализирует о наличии выходного напряжения. Межобмоточный экран и корпус трансформатора электрически соединены с минусовым проводом блока питания. Большинство элементов блока питания размещены на монтажной плате из нефольгированного текстолита размерами 30x60 мм (рис. 2). Применён проводной монтаж. Резистор R1 и варистор RU1 распаяны на контактах выключателя.

Рис. 2. Элементы блока на монтажной плате

УМЗЧ в АС SP-P110 собран на интегральной микросхеме TEA2025B, которая способна развивать мощность до 2,3 Вт в каждом канале. Вариант усилителя, реализованный производителем АС на этой микросхеме, развивал выходную мощность не более 0,2 Вт, а низкие звуковые частоты практически не прослушивались. Ещё одним неприятным бонусом была низкая чувствительность усилителя, недостаточная для воспроизведения фонограмм с карманных MP3-плейеров.

Поскольку микросхема TEA2025B способна на большее, было решено не изготавливать новый усилитель, а доработать имеющийся. Схема этого варианта УМЗЧ показана на рис. 3. Использована нумерация элементов, указанная на плате, обозначения дополнительно установленных элементов начинаются с префикса 1 . Конденсатор C12 (1000 мкФ) был заменён конденсатором большей ёмкости (2200 мкФ), C4 и C10 были заменены конденсаторами ёмкостью 470 мкФ (были по 220 мкФ). Аналогично конденсаторы C1 и С6 (0,22 мкФ) заменены конденсаторами ёмкостью 0,47 мкФ. Сопротивления резисторов R2 и R5 уменьшены до 100 Ом вместо 680 Ом, что увеличило коэффициент усиления УМЗЧ. Резистор R7 (560 Ом) заменён резистором сопротивлением 5,6 кОм.

Рис. 3. Схема доработанного УМЗЧ

Были переделаны и входные цепи УМЗЧ. Раньше входное напряжение поступало напрямую на регулятор громкости VR1, а после доработки - через RC-фильтры на элементах 1R12, 1С14и 1R13, 1C15, что защищает УМЗЧ от высокочастотных наводок. До доработки на выходе УМЗЧ динамические головки автоматически отключались при вставленном штекере головных телефонов, теперь их можно отключить с помощью кнопки SW1. Кроме того, сигнал на головные телефоны стал поступать через токоограничивающие резисторы 1R17, 1R18. Были установлены дополнительные блокировочные керамические конденсаторы 1C20, 1C21, 1C22. Выходная мощность доработанного УМЗЧ с новым источником питания - около 0,6 Вт в каждом канале.

Устройство было дополнительно оснащено стабилизатором напряжения +5 В, которое выводится на USB-гнездо 1XS1. К этому гнезду можно подключать различные мобильные устройства для их питания или зарядки встроенных аккумуляторных батарей. Стабилизатор собран на интегральной микросхеме 1DA2, резистор 1R15 уменьшает рассеиваемую микросхемой мощность. Стабилитрон 1VD2 защищает подключённую нагрузку от повышенного напряжения.

Поскольку в некоторых мобильных мультимедийных аппаратах общий вывод для подключения головных телефонов имеет электрический потенциал относительно общего минусового провода питания, для предотвращения повреждения таких устройств и обеспечения их работоспособности в разрыв общего провода УМЗЧ включены элементы 1R11, 1C13, 1R14.

В блоке питания можно применить диоды Шотки 1 N5819, MBRS140T3, MBR150, MBR340, BYV10-40, SB140. Диод 1N4003 можно заменить любым из серий 1 N4001-1 N4007, КД243, КД247. Светодиод может быть любого цвета свечения повышенной яркости. Варистор TVR10561 можно заменить варистором FNR-10K471, FNR-14K471, FNR-20K471, MYG20-471. Резистор R1 - импортный невозгораемый или Р1-7. Выключатель питания - кнопочный или клавишный, рассчитанный на коммутацию напряжения 230 В переменного тока, например, JPW-2104, RS-201-8C. Все неполярные конденсаторы - керамические импортные, оксидный - К50-35 или импортный. Взамен трансформатора ТС-БП-22 подойдёт унифицированный ТП-112-3.

В УМЗЧ применены резисторы С2-23 или импортные, оксидные и неполярные (керамические), конденсаторы - также импортные. Элементы стабилизатора напряжения установлены на дополнительной монтажной плате размерами 45x45 мм. Микросхема КА7805 установлена на дюралюминиевый теп-лоотвод размерами 68x40x2 мм, её можно заменить любой из серий 7805, 78M05. Доработанная плата УМЗЧ показана на рис. 4. На интегральной микросхеме U1 прикреплён дополнительный П-образный латунный теплоотвод площадью поверхности около 8 см 2 . Изначально тепло от этой микросхемы отводилось с помощью печатных проводников на печатной плате.

Рис. 4. Доработанная плата УМЗЧ

Размещение узлов в корпусах колонок показано на рис. 5. В одной колонке размещён блок питания с выключателем и индикаторным светодиодом, в другой - УМЗЧ с регулятором громкости, гнездо для подключения головных телефонов и выключатель динамических головок. Между собой колонки соединены четырёхпроводным мягким кабелем. По двум проводам поступает напряжение питания, по другим двум - сигнал с выхода УМЗЧ.

Рис. 5. Размещение узлов в корпусах колонок

Доработка УМЗЧ обеспечила улучшение качества звучания АС, он имеет более высокую чувствительность, а сама АС оснащена USB-портом. В результате звучание АС оказалось лучше, чем у компактных "кухонных" ЖК-телевизо-ров, ноутбуков, планшетов, других мобильных устройств. Были также намерения заменить безымянные динамические головки мощностью 1 Вт другими, мощностью 3...8 Вт, имеющими такие же габаритные размеры. К моему удивлению, "фирменные" динамические головки, изъятые из кинескопных (диагональ 51, 54 см) телевизоров, звучали заметно хуже.

Аналогично можно доработать и другие компьютерные активные АС, поскольку часто бывает так, что их производители с целью экономии не реализовывают заложенные в динамические головки и интегральные УМЗЧ потенциал.

При изготовлении нового блока питания надо строго выполнять правила техники безопасности, изложенные в статье "Осторожно! Электрический ток!" ("Радио", 2015, № 5, с. 54).


Дата публикации: 12.11.2015

Мнения читателей
  • Андрей / 18.12.2015 - 13:31
    А я влепил TDA2005 http://radiokot.ru/forum/download/file.php?mode=view&id=232341&sid=только конденсаторы C6 C7 развернуть

    Какую информацию можно найти в сервис мануале (инструкции)
    Сервис мануал (инструкция) содержит в себе информацию, относящуюся к обслуживанию и мелкому ремонту того или иного оборудования. Как правило, Вы получаете сервис мануал для Вашего устройства при его покупке. Кроме того, на сегодняшний день существует множество Интернет ресурсов, предоставляющих инструкции для устройств различных моделей и марок.

    Что такое схемы?
    Схемы и схематические диаграммы являются неотъемлемой частью электротехнической промышленности, так как они представляют собой наглядное описание конструкций тех или иных устройств. Схемы необходимы для обслуживания и ремонта различного оборудования и электромеханических систем.

    Использование руководств (инструкций) по ремонту.
    Руководства (инструкции) по ремонту для того или иного устройства обычно выпускаются независимыми издательствами, не имеющими отношения к официальным производителям оборудования. Это не те инструкции, которые изначально поставляются вместе с приобретаемой техникой. Хотя в целом информация, содержащаяся в руководствах по ремонту, схожа с той, которую можно найти в обычной инструкции, между данными документами есть явные различия. Дело в том, что руководства по ремонту обеспечивают нас более детальной, полной и специфичной информацией.

Для компьютерного пользователя ноутбук, несомненно, является удобным, компактным и достаточно функциональным прибором. Но, к сожалению, и данный аппарат не лишён изъянов.

Наверняка многие пользователи ноутбуков и нетбуков сталкивались с проблемой тихого воспроизведения звука через встроенные динамики этих аппаратов.

Если в условиях дома можно подключить внешнюю стереосистему, то вне домашних стен это бывает невозможно и приходиться ограничиваться наушниками. В таком случае речи о коллективном просмотре какого-либо фильма или сериала не идёт.

Как исправить ситуацию?

Исправить сложившуюся ситуацию помогут портативные компьютерные колонки с питанием от порта USB. Сейчас на прилавках магазинов огромный выбор данных приборов, но качество их может отличаться в разы.

Цена портативных компьютерных колонок с питанием от USB-порта достаточно низка и доступна широкому слою населения. Несмотря на это покупка данного устройства может быть и неудачной, так как качество воспроизведения звука такой системой оставит желать лучшего. Как ни странно, но среди дешёвых аппаратов данного класса попадаются приборы весьма хорошего качества, как по дизайну, так и по качеству звуковоспроизведения.

Проведём “вскрытие” портативной акустической системы с питанием от USB-порта и изучим электронную начинку данного прибора. С точки зрения радиолюбителя любопытно узнать, из каких электронных компонентов собираются подобные устройства. Полученные знания могут пригодиться при самостоятельном конструировании портативных звуковых колонок с питанием по USB или их ремонте.

Разборке подвергнем портативные мультимедийные USB колонки марки Sven 315 . Несмотря на их дешевизну, данная модель портативных колонок показала хорошее качество воспроизведения и звуковую мощность, достаточную для озвучивания небольшого помещения.


Разборка компьютерных USB колонок

Разбираются портативные колонки легко. Чтобы вскрыть корпус необходимо аккуратно снять переднюю декоративную панель.



Для того чтобы достать печатную плату усилителя необходимо выкрутить фиксирующую гайку, которая скрыта под пластмассовой ручкой регулятора громкости. После этого электронную плату можно свободно вынуть из корпуса.

Электронная начинка

Состав электронной начинки прибора оказался довольно прост. На небольшой по размеру печатной плате смонтирована интегральная схема стереофонического усилителя на базе микросхемы LM4863D . При напряжении питания в 5 вольт данная микросхема может выдать по 2,2 Вт выходной мощности на канал при сопротивлении звуковой катушки динамика в 4 Ом. На основании описания (datasheet) коэффициент нелинейных искажений + шум (THD+N ) при максимальной выходной мощности составляет 1%.


Плата усилителя и динамик

На основании этих данных можно сделать вывод о том, что на базе микросхемы LM4863D можно собрать довольно неплохой стерео усилитель с низковольтным питанием (5V) и выходной мощностью 2 Вт на каждый канал. Многие, кто ещё не знаком с современными микросхемами считают, что вместо LM4863D подойдёт TDA2822. Это заблуждение! TDA2822 очень прожорлива (по сравнению с LM4863) и на максимальной мощности выдаёт сильные искажения сигнала. Также оптимальное питание для TDA2822 около 12 вольт, что для портативной техники не есть хорошо. TDA2822 можно рекомендовать как легкодоступную замену, если в наличии нет LM4863. Такое может случиться, например, при ремонте.

Стоит отметить, что микросхема LM4863 разрабатывалась специально для компактных систем, поэтому микросхема требует минимум внешних элементов (так называемой обвязки). Микросхема выпускается в разных корпусах, от привычного DIP, до компактного SOIC.

Если возникнет желание самостоятельно собрать усилитель на базе микросхемы LM4863, то можно столкнуться с проблемой. Найти на радиорынках данную микросхему не так уж легко (так было на момент написания данной статьи). А вот на сетевых торговых площадках найти такую микросхему не составило труда. Например, в интернет-магазине AliExpress.com микросхему LM4863 легко найти во всевозможных корпусах и любом количестве. Цена 1 микросхемы менее 1$, если покупать сразу штук 10.

Как купить радиодетали на Aliexpress, я рассказывал .

Кроме самой микросхемы усилителя на печатной плате установлен разъём для подключения пассивной звуковой колонки (без встроенного усилителя), сдвоенный переменный резистор для регулировки входного звукового сигнала и электролитический конденсатор . Со стороны печатных проводников монтажной платы установлены SMD элементы обвязки, которые необходимы для работы интегрального усилителя. Питание микросхемы осуществляется от разъёма USB, который подключается к любому свободному порту ноутбука или стационарного компьютера.

Типовая схема подключения микросхемы LM4863 взята из описания (datasheet"а) на данную микросхему и показана на рисунке.


Типовая схема включения микросхемы LM4863 (взято из описания)

По типовой схеме включения микросхемы LM4863 видно, что она способна работать и на обычные наушники (Headphone ), сопротивление которых составляет 32 Ом. В микросхеме предусмотрена схема определения подключения наушников и для реализации этой функции отведён 16 (HP-IN) вывод.

Для тех, кто разбирается в электронике и datasheet’ы на английском языке их не пугают, могут легко микросхемы LM4863 в интернете на сайте alldatasheet.com.

Схема усилителя портативных USB колонок

Принципиальная схема усилителя сведена вручную с печатной платы компьютерных USB колонок Sven-315. На схеме показан один конденсатор C2 вместо двух (C7,C9), которые реально присутствуют на печатной плате (см. ниже). Сделано это потому, что на печатной плате конденсаторы соединены параллельно (C7 и C9), и на сведённой схеме конденсатор C2 указывает на общую ёмкость этих двух конденсаторов.


Принципиальная схема усилителя на базе LM4863D (сведена вручную)

Как видим, типовая схема из описания отличается от той, что сведена вручную с печатной платы усилителя компьютерных колонок. На схеме отсутствуют элементы, которые устанавливаются в случае добавления в схему разъёма для наушников. В остальном схема соответствует типовой, приведённой в описании на микросхему LM4863.


Размещение элементов на печатной плате

Если планируется использовать портативные колонки без ноутбука, например, совместно с MP3-плеером, то для питания колонок вполне подойдёт 5-ти вольтовый адаптер питания. Главное, чтобы адаптер питания смог обеспечить достаточный ток нагрузки (как оценочный грубый ориентир: стандартный ток нагрузки для портов USB – не более 500 mA). Согласно описанию на микросхему LM4863 максимальный ток покоя (когда на микросхему не подаётся звуковой сигнал) составляет 20 mA. Естественно, при воспроизведении потребляемый ток будет выше.

На фото показан вариант запитки портативных колонок SVEN-315 от 5-ти вольтового адаптера, который используется для зарядки плеера iPod. Максимальный ток нагрузки адаптера 1А чего с лихвой хватает для штатной работы портативных колонок.

Как выяснилось, качественное звуковоспроизведение портативных колонок SVEN-315 заключается в рациональном исполнении корпуса. Как известно, на качество звуковых акустических систем влияют не только применяемые в них громкоговорители, но и корпус. Чтобы убедиться в этом, достаточно вытащить динамик из корпуса и включить воспроизведение. Качество и звуковая мощность воспроизведения окажутся намного хуже. Данное замечание сделано не случайно, поскольку было проведено сравнение качества звуковоспроизведения портативных колонок SVEN-315 и аналогичных, но более дорогих USB колонок SVEN PS-30.

Несмотря на тот факт, что звуковые колонки SVEN PS-30 смонтированы на базе интегрального USB аудио чипа CM6120-S в составе которого 16-ти битный ЦАП и звуковые усилители класса D, качество их звуковоспроизведения субъективно (на слух) гораздо хуже из-за плохого исполнения корпуса акустической системы.

Корпус портативных колонок SVEN-315 изготовлен из ABS-пластика. Возможно, именно конструкция корпуса и позволяет “выжать” из малогабаритных динамиков все их скромные возможности.


В этой статье я хочу рассказать о способе борьбы с помехами из компьютерных колонок Genius SP-U110 .
Колонки эти стоят у меня на работе. Кроме выдачи музыки, они ещё умудрялись фонить от сотовых телефонов и прочих радиопомех. В итоге колонки были вскрыты для анализа причин фона.

Считаю, что главной проблемой является питание от порта USB компьютера. При этом образуется «земляная петля» между сигнальной «землёй» на штекере mini-jack и силовой землёй USB. Попытки изменения места подключения экранной оплётки сигнального провода особых улучшений не давали. Тогда было решено сделать новую печатную плату.

Схема УМЗЧ на TDA2822 с токовой ООС

Расскажу о «сердце» акустической системы Genius Sp-U110. УНЧ собран на микросхеме TDA2822 в миниатюрном планарном 8-выводном корпусе. Питать её можно от 1,8 до 15 Вольт. Т.к. колонки питаются от USB, то напряжение будет 5 Вольт и оно довольно «грязное» из-за помех от БП компьютера.
Питание +5 Вольт подано на 2 вывод (согласно даташита), «земля» к 4 выводу. Конденсатор С5 был максимально близко установлен к микросхеме.

Повторять стандартную схему из даташита мне не хотелось, а схема от производителя колонок была ещё хуже. Было решено применить включение ИТУН (источник тока управляемый напряжением). Такая реализация обладает специфическим звучанием, сравнимым с ламповыми усилителями.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только

Я сразу удалил разделительные конденсаторы во входных цепях левого и правого канала. Резисторы R8, R9 поставил на 100к, против 180к в оригинале, т.к. амплитуды входного сигнала не хватало для достижения максимальной мощности колонок. Добавил конденсаторы С11, С12 для подавления радиопомех.

Конденсаторы С9, С10 поставил на 100 мкФ*16В, Jamicon электролитические неполярные. Т.к. эти конденсаторы входят в цепь ОООС (общая отрицательная обратная связь), то экономить на их качестве губительно для звука.

Конденсаторы С7, С8 служат для недопущения постоянного тока на динамики. Иначе вместо звука будет гул и дым. Тип конденсаторов - электролитические полярные Jamicon на 1000 мкФ*25В. В принципе ёмкость их может быть и меньше, т.к. отдача по НЧ у штатных динамиков слабая, а меньшая ёмкость снизит уровень НЧ-составляющей сигнала, чтобы не мучить динамики тем, чего им не «переварить». Но поставил, что было под рукой.

Резисторы R4, R6 являются токовыми датчиками, т.е. преобразуют ток, проходящий через катушки динамиков в напряжение, пропорциональное этому току. Через конденсаторы С9, С10 полученный сигнал подаётся на инвертирующие входы микросхемы, чтобы она была в курсе происходящего и могла подправить искажения выходного сигнала. Упрощённо, в этом состоит принцип ОООС.

На верхнем слое все дорожки «земли» частично сведены в одну точку - на «минус» конденсатора блока фильтрации питания, частично применил полигонную схему.
Сигнальная «земля» отделена и предполагает одну точку подключения к силовой «земле».

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»