Как найти обратную матрицу через алгебраические дополнения. Как найти обратную матрицу. Алгоритм нахождения обратной матрицы

АЛГЕБРАИЧЕСКИЕ ДОПОЛНЕНИЯ И МИНОРЫ

Пусть имеем определитель третьего порядка: .

Минором , соответствующим данному элементу a ij определителя третьего порядка, называется определитель второго порядка, полученный из данного вычёркиванием строки и столбца, на пересечении которых стоит данный элемент, т.е. i -ой строки и j -го столбца. Миноры соответствующие данному элементу a ij будем обозначать M ij .

Например , минором M 12 , соответствующим элементу a 12 , будет определитель , который получается вычёркиванием из данного определителя 1-ой строки и 2-го столбца.

Таким образом, формула, определяющая определитель третьего порядка, показывает, что этот определитель равен сумме произведений элементов 1-ой строки на соответствующие им миноры; при этом минор, соответствующий элементу a 12 , берётся со знаком “–”, т.е. можно записать, что

. (1)

Аналогично можно ввести определения миноров для определителей второго порядка и высших порядков.

Введём ещё одно понятие.

Алгебраическим дополнением элемента a ij определителя называется его минор M ij , умноженный на (–1) i+j .

Алгебраическое дополнение элемента a ij обозначается A ij .

Из определения получаем, что связь между алгебраическим дополнением элемента и его минором выражается равенством A ij = (–1) i+j M ij .

Например,

Пример. Дан определитель . Найти A 13 , A 21 , A 32 .

Легко видеть, что используя алгебраические дополнения элементов, формулу (1) можно записать в виде:

Аналогично этой формуле можно получить разложение определителя по элементам любой строки или столбца.

Например, разложение определителя по элементам 2-ой строки можно получить следующим образом. Согласно свойству 2 определителя имеем:

Разложим полученный определитель по элементам 1-ой строки.

. (2)

Отсюда т.к. определители второго порядка в формуле (2) есть миноры элементов a 21 , a 22 , a 23 . Таким образом, , т.е. мы получили разложение определителя по элементам 2-ой строки.

Аналогично можно получить разложение определителя по элементам третьей строки. Используя свойство 1 определителей (о транспонировании), можно показать, что аналогичные разложения справедливы и при разложении по элементам столбцов.

Таким образом, справедлива следующая теорема.

Теорема (о разложении определителя по заданной строке или столбцу). Определитель равен сумме произведений элементов какой–либо его строки (или столбца) на их алгебраические дополнения.

Всё вышесказанное справедливо и для определителей любого более высокого порядка.

Примеры.

ОБРАТНАЯ МАТРИЦА

Понятие обратной матрицы вводится только для квадратных матриц .

Если A – квадратная матрица, то обратной для неё матрицей называется матрица, обозначаемая A -1 и удовлетворяющая условию . (Это определение вводится по аналогии с умножением чисел)

Способы нахождения обратной матрицы. Рассмотрим квадратную матрицу

Обозначим Δ = det A.

Квадратная матрица А называется невырожденной, или неособенной , если ее определитель отличен от нуля, и вырожденной, или особенной , если Δ = 0.

Квадратная матрица В есть для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема . Для того, чтобы матрица А имела обратную матрицу, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Обратная матрица матрице А, обозначается через А - 1 , так что В = А - 1 и вычисляется по формуле

, (1)

где А i j - алгебраические дополнения элементов a i j матрицы A..

Вычисление A -1 по формуле (1) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить A -1 с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

Пример 1 . Для матрицы найти A -1 .

Решение. Находим сначала детерминант матрицы А
значит, обратная матрица существует и мы ее можем найти по формуле: , где А i j (i,j=1,2,3) - алгебраические дополнения элементов а i j исходной матрицы.

Откуда .

Пример 2 . Методом элементарных преобразований найти A -1 для матрицы: А= .

Решение. Приписываем к исходной матрице справа единичную матрицу того же порядка: . С помощью элементарных преобразований столбцов приведем левую “половину” к единичной, совершая одновременно точно такие преобразования над правой матрицей.
Для этого поменяем местами первый и второй столбцы:
~ . К третьему столбцу прибавим первый, а ко второму - первый, умноженный на -2: . Из первого столбца вычтем удвоенный второй, а из третьего - умноженный на 6 второй; . Прибавим третий столбец к первому и второму: . Умножим последний столбец на -1: . Полученная справа от вертикальной черты квадратная матрица является обратной матрицей к данной матрице А. Итак,
.

Пусть дана квадратная матрица . Требуется найти обратную матрицу.

Первый способ. В теореме 4.1 существования и единственности обратной матрицы указан один из способов ее нахождения.

1. Вычислить определитель данной матрицы. Если, то обратной матрицы не существует (матрицавырожденная).

2. Составить матрицу из алгебраических дополненийэлементов матрицы.

3. Транспонируя матрицу , получить присоединенную матрицу.

4. Найти обратную матрицу (4.1), разделив все элементы присоединенной матрицы на определитель

Второй способ. Для нахождения обратной матрицы можно использовать элементарные преобразования.

1. Составить блочную матрицу , приписав к данной матрицеединичную матрицу того же порядка.

2. При помощи элементарных преобразований, выполняемых над строками матрицы , привести ее левый блокк простейшему виду. При этом блочная матрица приводится к виду, где- квадратная матрица, полученная в результате преобразований из единичной матрицы.

3. Если , то блокравен обратной матрице, т.е.. Если, то матрицане имеет обратной.

В самом деле, при помощи элементарных преобразований строк матрицы можно привести ее левый блокк упрощенному виду(см. рис. 1.5). При этом блочная матрицапреобразуется к виду, где- элементарная матрица, удовлетворяющая равенству. Если матрицаневырожденная, то согласно п.2 замечаний 3.3 ее упрощенный вид совпадает с единичной матрицей. Тогда из равенстваследует, что. Если же матрицавырожденная, то ее упрощенный видотличается от единичной матрицы, а матрицане имеет обратной.

11. Матричные уравнения и их решение. Матричная форма записи СЛАУ. Матричный способ (метод обратной матрицы) решения СЛАУ и условия его применимости.

Матричными уравнениями называются уравнения вида: A*X=C; X*A=C; A*X*B=C где матрица А,В,С известны,матрица Х не известна, если матрицы А и В не вырождены, то решения исходных матриц запишется в соответственном виде: Х=А -1 *С; Х=С*А -1 ; Х=А -1 *С*В -1 Матричная форма записи систем линейных алгебраических уравнений. С каждой СЛАУ можно связать несколько матриц; более того – саму СЛАУ можно записать в виде матричного уравнения. Для СЛАУ (1) рассмотрим такие матрицы:

Матрица A называется матрицей системы . Элементы данной матрицы представляют собой коэффициенты заданной СЛАУ.

Матрица A˜ называется расширенной матрицей системы . Её получают добавлением к матрице системы столбца, содержащего свободные члены b1,b2,...,bm. Обычно этот столбец отделяют вертикальной чертой, – для наглядности.

Матрица-столбец B называется матрицей свободных членов , а матрица-столбец X – матрицей неизвестных .

Используя введённые выше обозначения, СЛАУ (1) можно записать в форме матричного уравнения: A⋅X=B.

Примечание

Матрицы, связанные с системой, можно записать различными способами: всё зависит от порядка следования переменных и уравнений рассматриваемой СЛАУ. Но в любом случае порядок следования неизвестных в каждом уравнении заданной СЛАУ должен быть одинаков.

Матричный метод подходит для решения СЛАУ, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы отличен от нуля. Если система содержит больше трех уравнений, то нахождение обратной матрицы требует значительных вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса .

12. Однородные СЛАУ, условия существования их ненулевых решений. Свойства частных решений однородных СЛАУ.

Линейное уравнение называется однородным, если его свободный член равен нулю, и неоднородным в противном случае. Система, состоящая из однородных уравнений, называется однородной и имеет общий вид:

13 .Понятие линейной независимости и зависимости частных решений однородной СЛАУ. Фундаментальная система решений (ФСР) и её нахождение. Представление общего решения однородной СЛАУ через ФСР.

Система функций y 1 (x ), y 2 (x ), …, y n (x ) называется линейно зависимой на интервале (a , b ), если существует набор постоянных коэффициентов , не равных нулю одновременно, таких, что линейная комбинация этих функций тождественно равна нулю на (a , b ): для . Если равенство для возможно только при , система функций y 1 (x ), y 2 (x ), …, y n (x ) называется линейно независимой на интервале (a , b ). Другими словами, функции y 1 (x ), y 2 (x ), …, y n (x ) линейно зависимы на интервале (a , b ), если существует равная нулю на (a , b ) их нетривиальная линейная комбинация. Функции y 1 (x ),y 2 (x ), …, y n (x ) линейно независимы на интервале (a , b ), если только тривиальная их линейная комбинация тождественно равна нулю на (a , b ).

Фундаментальной системой решений (ФСР) однородной СЛАУ называется базис этой системы столбцов.

Количество элементов в ФСР равно количеству неизвестных системы минус ранг матрицы системы. Любое решение исходной системы есть линейная комбинация решений ФСР.

Теорема

Общее решение неоднородной СЛАУ равно сумме частного решения неоднородной СЛАУ и общего решения соответствующей однородной СЛАУ.

1 . Если столбцы - решения однородной системы уравнений, то любая их линейная комбинациятакже является решением однородной системы.

В самом деле, из равенств следует, что

т.е. линейная комбинация решений является решением однородной системы.

2. Если ранг матрицы однородной системы равен , то система имеетлинейно независимых решений.

Действительно, по формулам (5.13) общего решения однородной системы найдем частных решений, придавая свободным переменным следующиестандартные наборы значений (всякий раз полагая, что одна из свободных переменных равна единице, а остальные - равны нулю):

которые линейно независимы. В самом деле, если из этих столбцов составить матрицу, то последние ее строк образуют единичную матрицу. Следовательно, минор, расположенный в последнихстроках не равен нулю (он равен единице), т.е. является базисным. Поэтому ранг матрицы будет равен. Значит, все столбцы этой матрицы линейно независимы (см. теорему 3.4).

Любая совокупность линейно независимых решенийоднородной системы называетсяфундаментальной системой (совокупностью) решений .

14 Минор -ого порядка, базисный минор, ранг матрицы. Вычисление ранга матрицы.

Минором порядка k матрицы А называется детерминант некоторой ее квадратной подматрицы порядка k.

В матрице А размеров m x n минор порядка r называется базисным, если он отличен от нуля, а все миноры большего порядка, если они существуют, равны нулю.

Столбцы и строки матрицы А, на пересечении которых стоит базисный минор, называются базисными столбцами и строками А.

Теорема 1. (О ранге матрицы). У любой матрицы минорный ранг равен строчному рангу и равен столбцовому рангу.

Теорема 2.(О базисном миноре). Каждый столбец матрицы раскладывается в линейную комбинацию ее базисных столбцов.

Рангом матрицы (или минорным рангом) называется порядок базисного минора или, иначе, самый большой порядок, для которого существуют отличные от нуля миноры. Ранг нулевой матрицы по определению считают 0.

Отметим два очевидных свойства минорного ранга.

1) Ранг матрицы не меняется при транспонировании, так как при транспонировании матрицы все ее подматрицы транспонируются и миноры не меняются.

2) Если А’-подматрица матрицы А, то ранг А’ не превосходит ранга А, так как ненулевой минор, входящий в А’, входит и в А.

15. Понятие -мерного арифметического вектора. Равенство векторов. Действия над векторами (сложение, вычитание, умножение на число, умножение на матрицу). Линейная комбинация векторов.

Упорядоченная совокупность n действительных или комплексных чисел называется n-мерным вектором . Числа называются координатами вектора .

Два (ненулевых) вектора a и b равны, если они равнонаправлены и имеют один и тот же модуль. Все нулевые векторы считаются равными. Во всех остальных случаях векторы не равны.

Сложение векторов. Для сложения векторов есть два способа.1. Правило параллелограмма. Чтобы сложить векторы и, помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторови.

2. Второй способ сложения векторов - правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и . По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Вычитание векторов. Вектор направлен противоположно вектору. Длины векторовиравны. Теперь понятно, что такое вычитание векторов. Разность векторов и - это сумма вектора и вектора .

Умножение вектора на число

При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины. Он сонаправлен с вектором, если k больше нуля, и направлен противоположно, если k меньше нуля.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними. Если векторы перпендикулярны, их скалярное произведение равно нулю. А вот так скалярное произведение выражается через координаты векторов и .

Линейная комбинация векторов

Линейной комбинацией векторов называют вектор

где - коэффициенты линейной комбинации. Если комбинация называется тривиальной, если - нетривиальной.

16 .Скалярное произведение арифметических векторов. Длина вектора и угол между векторами. Понятие ортогональности векторов.

Скалярным произведением векторов а и в называется число,

Скалярное произведение используется для вычисления:1)нахождения угла между ними;2)нахождение проекции векторов;3)вычисление длины вектора;4)условия перпендикулярности векторов.

Длиной отрезка АВ называют расстоянием между точками А иВ. Угол между векторами А и В называют угол α=(а,в) ,0≤ α ≤П. На который необходимо повернуть 1 вектор,чтоб его направления совпало с другим вектором. При условии,что их начала совпадут.

Ортом а называется вектор а имеющий единичную длину и направления а.

17. Система векторов и её линейная комбинация. Понятие линейной зависимости и независимости системы векторов. Теорема о необходимом и достаточном условиях линейной зависимости системы векторов.

Система векторов a1,a2,...,an называется линейно зависимой, если существуют числа λ1,λ2,...,λnтакие, что хотя бы одно из них отлично от нуля и λ1a1+λ2a2+...+λnan=0. В противном случае система называется линейно независимой.

Два вектора a1 и a2 называются коллинеарными если их направления совпадают или противоположны.

Три вектора a1,a2 и a3 называются компланарными если они параллельны некоторой плоскости.

Геометрические критерии линейной зависимости:

а) система {a1,a2} линейно зависима в том и только том случае, когда векторы a1 и a2 коллинеарны.

б) система {a1,a2,a3} линейно зависима в том и только том случае, когда векторы a1,a2 и a3компланарны.

теорема. (Необходимое и достаточное условие линейной зависимости системы векторов.)

Система векторов векторного пространства является линейно зависимой тогда и только тогда, когда один из векторов системы линейно выражается через другие вектора этой системы.

Следствие.1. Система векторов векторного пространства является линейно независимой тогда и только тогда, когда ни один из векторов системы линейно не выражается через другие вектора этой системы.2. Система векторов, содержащая нулевой вектор или два равных вектора, является линейно зависимой.

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Определение 1

Метод обратной матрицы - это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Пример 1

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи : А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n - матрица системы.

X = x 1 x 2 ⋮ x n - столбец неизвестных,

B = b 1 b 2 ⋮ b n - столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A - 1:

A - 1 × A × X = A - 1 × B .

Так как А - 1 × А = Е, то Е × X = А - 1 × В или X = А - 1 × В.

Замечание

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю. Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А.

В том случае, если d e t A н е р а в е н н у л ю, у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Пример 2

Решаем СЛАУ методом обратной матрицы:

2 x 1 - 4 x 2 + 3 x 3 = 1 x 1 - 2 x 2 + 4 x 3 = 3 3 x 1 - x 2 + 5 x 3 = 2

Как решить?

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 - 4 3 1 - 2 4 3 - 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X:
  • Находим определитель матрицы А:

d e t A = 2 - 4 3 1 - 2 4 3 - 1 5 = 2 × (- 2) × 5 + 3 × (- 4) × 4 + 3 × (- 1) × 1 - 3 × (- 2) × 3 - - 1 × (- 4) × 5 - 2 × 4 - (- 1) = - 20 - 48 - 3 + 18 + 20 + 8 = - 25

d e t А не равняется 0, следовательно для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А - 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А:

А 11 = (- 1) (1 + 1) - 2 4 - 1 5 = - 10 + 4 = - 6 ,

А 12 = (- 1) 1 + 2 1 4 3 5 = - (5 - 12) = 7 ,

А 13 = (- 1) 1 + 3 1 - 2 3 - 1 = - 1 + 6 = 5 ,

А 21 = (- 1) 2 + 1 - 4 3 - 1 5 = - (- 20 + 3) = 17 ,

А 22 = (- 1) 2 + 2 2 3 3 5 - 10 - 9 = 1 ,

А 23 = (- 1) 2 + 3 2 - 4 3 - 1 = - (- 2 + 12) = - 10 ,

А 31 = (- 1) 3 + 1 - 4 3 - 2 4 = - 16 + 6 = - 10 ,

А 32 = (- 1) 3 + 2 2 3 1 4 = - (8 - 3) = - 5 ,

А 33 = (- 1) 3 + 3 2 - 4 1 - 2 = - 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А:

А * = - 6 7 5 17 1 - 10 - 10 - 5 0

  • Записываем обратную матрицу согласно формуле:

A - 1 = 1 d e t A (A *) T: А - 1 = - 1 25 - 6 17 - 10 7 1 - 5 5 - 10 0 ,

  • Умножаем обратную матрицу А - 1 на столбец свободных членов В и получаем решение системы:

X = A - 1 × B = - 1 25 - 6 17 - 10 7 1 - 5 5 - 10 0 1 3 2 = - 1 25 - 6 + 51 - 20 7 + 3 - 10 5 - 30 + 0 = - 1 0 1

Ответ : x 1 = - 1 ; x 2 = 0 ; x 3 = 1

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Обратная матрица для данной это такая матрица, умножение исходной на которую дает единичную матрицу: Обязательным и достаточным условием наличия обратной матрицы является неравенство нулю детерминанта исходной (что в свою очередь подразумевает, что матрица должна быть квадратная). Если же определитель матрицы равняется нулю, то ее называют вырожденной и такая матрица не имеет обратной. В высшей математике обратные матрицы имеют важное значение и применяются для решения ряда задач. Например, на нахождении обратной матрицы построен матричный метод решения систем уравнений. Наш сервис сайт позволяет вычислять обратную матрицу онлайн двумя методами: методом Гаусса-Жордана и с помощью матрицы алгебраических дополнений. Прервый подразумевает большое количество элементарных преобразований внутри матрицы, второй - вычисление детерминанта и алгебраических дополнений ко всем элементам. Для вычисления определителя матрицы онлайн вы можете воспользоваться другим нашим сервисом - Вычисление детерминанта матрицы онлайн

.

Найти обратную матрицу на сайт

сайт позволяет находить обратную матрицу онлайн быстро и бесплатно. На сайте произвордятся вычисления нашим сервисом и выдается результат с подробным решением по нахождению обратной матрицы . Сервер всегда выдает только точный и верный ответ. В задачах по определению обратной матрицы онлайн , необходимо, чтобы определитель матрицы был отличным от нуля, иначе сайт сообщит о невозможности найти обратную матрицу ввиду равенства нулю определителя исходной матрицы. Задача по нахождению обратной матрицы встречается во многих разделах математики, являясь одним из самых базовых понятий алгебры и математическим инструментом в прикладных задачах. Самостоятельное определение обратной матрицы требует значительных усилий, много времени, вычислений и большой внимательности, чтобы не допустить описку или мелкую ошибку в вычислениях. Поэтому наш сервис по нахождению обратной матрицы онлайн значительно облегчит вам задачу и станет незаменимым инструментом для решения математических задач. Даже если вы находите обратную матрицу самостоятельно, мы рекомендуем проверить ваше решение на нашем сервере. Ввведите вашу исходную матрицу у нас на Вычисление обратной матрицы онлайн и сверьте ваш ответ. Наша система никогда не ошибается и находит обратную матрицу заданной размерности в режиме онлайн мгновенно! На сайте сайт допускаются символьные записи в элементах матриц , в этом случае обратная матрица онлайн будет представлена в общем символьном виде.